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Martin Grohe Thomas Schwentick
Uni Freiburg Uni Mainz

Durch Arbeiten von Libkin und anderen Autoren hat sich in den letzten beiden Jahren die
Hoffnung ergeben, die Komplexititsklassen TC? und LOGSPACE konnten durch den Nachweis,
daB TC" nur lokale Eigenschaften umfa8t, voneinander getrennt werden. Grob gesagt heifit dabei
eine Eigenschaft von Tupeln T lokal, wenn sie nur vom Isomorphietyp einer Umgebung von T
abhingt. LOGSPACE enthilt hochgradig nicht-lokale Eigenschaften, wie z.B. (s, t)-Erreichbarkeit.

Obwohl inzwischen von Hella und Grohe gezeigt wurde, da$ TC® nicht im strengen Sinne (mit
konstant groen Umgebungen) lokal ist, ist es nicht ausgeschlossen, da TC? in einem schwicheren
Sinne lokal ist. In der dem Vortrag zugrundeliegenden Arbeit wird gezeigt, dafl alle Eigenschaften,
die von ordnungsinvarianten First-Order Formeln ausgedriickt werden konnen (einer Teillogik der
TCP charakterisierenden Logik), lokal im strengen Sinne sind. Damit wird eine offene Frage von
Libkin beantwortet.



Attribute Values

Andreas Birkendorf, Norbert Klasner,
Christian Kuhlmann and Hans U. Simon

Lehrstuhl Mathematik und Informatik
Fakultat fiir Mathematik

Ruhr-Universitat Bochum
D-44780 Bochum

This paper deals with the UAV learning model of Goldman, Kwek and Scott [2], where “UAV”
is the acronym for “Unspecified Attribute Values”. As in [2], we consider exact learning within the
UAV framework. A smooth transition between exact learning in the UAV setting and standard
exact learning is obtained by putting a fixed bound r on the number of unspecified attribute
values per instance. For r = 0, we obtain the standard model. For » = n (the total number
of attributes), we obtain the (unrestricted) UAV model. Between these extremes, we find the
hierarchies (UAV-MQ), )o<;<n, (UAV-EQ), )o<r<n, and (UAV-ARB-EQ), )o<;<n-

Our main results are as follows. We present various lower bounds on the number of ARB-EQs
and UAV-MQs in terms of the Vapnik Chervonenkis dimension of the concept class. We show
furthermore that a natural extension of Angluin’s Sunflower Lemma [1] is still applicable in the
exact UAV learning model. Our UAV Sunflower Lemma allows to establish exponentially large
lower bounds on the necessary number of UAV-MQs for several popular concept classes. On the
other hand, we can show that slight simplifications of these classes are efficiently learnable using
only few UAV-MQs. Finally, we investigate the inherent structure of the aforementioned three
hierarchies and the relations between them. It turns out that query type UAV-EQ, , is strictly
stronger than UAV-EQ), (for each constant 7). The analogous result for UAV-ARB-EQ is valid.
Furthermore, UAV-MQ), |, 10g ) 18 strictly stronger than UAV-MQ,. We also determine the relation
between query types chosen from different hierarchies.
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Attribut-effizientes Lernen (Abstract)

Peter Damaschke
FernUniversitit, Theoretische Informatik II
58084 Hagen, Germany

Peter.Damaschke@fernuni-hagen.de

Wir untersuchen in [4] das Lernen von beliebigen Booleschen Funktionen, in denen nur r
der n Variablen relevant sind, mittels Orakelfragen. Probleme dieses Typs haben interessante
Anwendungen [1] [5] [7]. Die bisherige Literatur (etwa [2] [3] [8]) konzentriert sich auf spezielle
Funktionenklassen und betrachtet nur adaptive Strategien (d.h. die Fragen diirfen von vorherigen
Antworten abhéingen). In manchen Anwendungen sind die Orakelfragen (Tests) jedoch zeitrau-
bend, sind aber andererseits parallel ausfiihrbar, so dafl auch nichtadaptive Strategien gefragt
sind.

Wir geben zunéchst einen simplen, aber fast optimalen adaptiven Algorithmus mit O(r2" logn)
Fragen an. Es stellt sich heraus, daf} alle bis auf r logn Fragen eine r-universelle Belegungsfamilie
bilden miissen und nichtadaptiv gestellt werden konnen. Im Fall » = 2 kommen wir mit insgesamt
etwa 2.275logn Fragen aus, was nahe an der offensichtlichen unteren Schranke 2logn liegt.

Es folgt eine kombinatorische Charakterisierung derjenigen Belegungsfamilien, welche die ge-
nannten Funktionen rein nichtadaptiv lernen — sog. r-weise bipartit zusammenhéngende Familien.
Es existieren solche Familien der Grofie O(r2"logn) — das bedeutet: Nichtadaptives attribut-
effizientes Lernen ist nicht sehr viel teurer als adaptives Lernen. Eine pseudopolynomiale explizite
Konstruktion mittels einer Derandomisierungs-Technik aus [6] hat eine kaum schlechtere Schranke.

Im Falle monotoner Boolescher Funktionen kann die optimale Anzahl von O(2"+r logn) Fragen
bereits in O(r) parallelen Runden erreicht werden (unabhéngig von n), rein nichtadaptives Lernen
bendtigt dagegen wieder (2" logn) Fragen.
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Which Polynomial D—Verboseness Classes Contain
p-Bi-Immune Languages?

Arfst Nickelsen
Fachbereich Informatik der TU Berlin
nicke@cs.tu-berlin.de

Zusammenfassung

The connection is investigated between two well known notions which deal with languages
that show polynomial time behaviour weaker than membership decidability. One notion is po-
lynomial time bi-immunity (p-bi-immunity). The other one is polynomial time D-verboseness
which captures p-selectivity, p-cheatability, p-verboseness and similar notions, where partial
information about the characteristic function is computed. The type of partial information
is determined by a family of sets of bitstrings D. A full characterization of those D for which
there are p-bi-immune polynomially D-verbose languages is given. Results of the same ty-
pe for special cases of polynomial D-verboseness were already given by Goldsmith, Joseph,
Young [GJY93], Beigel [Bei90], and Amir, Gasarch [AGS8S].

1 Introduction

If a language is not decidable in polynomial time one may ask wether it nevertheless exhibits
some polynomial time behaviour. One then does not expect the polynomial time algorithm for
the language A to actually answer the question “z € A ?” for all inputs x. Instead one weakens
this demand in different ways. One way of weakening is to expect the polynomial time algorithm
to decide only an infinite subset of A or of A, the complement of A. If even this is not possible, A
is called polynomially bi-immune or p-bi-immune. Another approach is to run the algorithm on
tuples of input words (z1,...,x,) and expect some partial information on membership of these
words in A. This means that the algorithm should narrow the range of possibilities for values of
Xa(x1,...,x,) (Where x4 is the characteristic function for A ). To get a unified picture of such
classes Beigel, Gasarch and Kinber introduced D-verboseness and strong D-verboseness [BGK95]
where the type of partial information is specified by a family D of sets of bitstrings. The definitions
for the time bounded version, namely polynomially D-verbose languages, are given below. Basic
properties of these polynomial D-verboseness classes are presented in [Nic97]. The purpose of this
paper is to fully characterize those D for which languages can be at the same time polynomially
D-verbose and p-bi-immune.

2 Definitions

For a given language A the characteristic function x4 : ¥* — {0, 1} is defined by ya(z) =1 <
r € A. We extend x4 to tuples of words by xa(z1,...,2,) = xa(z1) -+ xa(x,). For a bitstring b
the number of 1’s in b is denoted #1(b), bi] is the i-th bit of b, and b[i, . .. , j] is the string formed
by the i-th to the j-th bit of b. We now define p-bi-immunity and polynomial D-verboseness.

Definition 1 (p-Bi-Immunity) A language A is p-bi-immune if neither A nor A contains an
infinite language B € P.



strings of length n, i.e., D; C {0,1}™ for all i € {1,.. . ,r}. We call D an n-family if Ui, Di =
{0,1}".

Definition 3 (Polynomially D-Verbose) For a given n-family D a language A is in P[D] iff
there is a polynomially time-bounded deterministic Turing machine M that on input (z1,. .., Ty,)
outputs a D € D such that x a(x1, ... ,2,) € D. Such languages are called polynomially D-verbose.

For more details on polynomial D-verboseness see [Nic97]. We restate some known fact on n-
families and D-verboseness.

Definition 4 (Normal Form) An n-family D is in normal form if it is closed under permuta-
tions, projections and replacements.

Fact 5 (Normal Form) For every n-family D there is a unique n-family D' in normal form with
P[D]=P[D].
Fact 6 (Class Inclusion Reduces to Family Inclusion) Forn-families Dy, Dy in normal form
P[D,\]| C P[D,] iff D, C D, .

Definition 7 (Generated n-Family) Consider sets of bitstrings Dy, ..., D, C {0,1}". Then
(Dy,...,D,) denotes the minimal n-family D in normal form such that {D:,...,D,} C D.
This means that (Dy, ... ,D,) is the closure of { D1, ..., D,} under permutations, projections and
replacements. We say that (D, ..., D,) is generated by Dy, ... ,D,.

Some n-families are of special interest. We define n-SEL and (k,n)-SIZE.
Definition 8 (SEL, SIZE)

e n-SEL = ({01"* | 0 <i < n})

e For1<k<2": (k,n)-SIZE={D C{0,1}* | |D| < k}
The class P [2-SEL] equals the class P-SEL of p-selective languages. We get:

Fact 9 (SEL)
P-SEL = P[2-SEL] = P[n-SEL) for n > 2

P|(k,k)-SIZE] = P|(k,n)-SIZE] for n > k

3 Previous Results

For polynomial D-verboseness three results about the possibility of p-bi-immunity are known. We
restate these results in our nomenclature. Goldsmith, Joseph and Young [GJY87][GJY93] showed
the following.

Theorem 10 (Goldsmith, Joseph, Young)
P[2-SEL] contains bi-immune languages.

In the same paper Goldsmith, Joseph and Young [GJY93| give a construction that yields the
following result which was independently obtained by Beigle [Bei90).

Theorem 11 (Beigel; Goldsmith, Joseph, Young)
P[({000,001,010,011})] contains a p-bi-immune language.

On the other hand Amir and Gasarch [AG88] showed:

Theorem 12 (Amir, Gasarch)
P[(2,2)-SIZE] does not contain p-bi-immune languages.



We first define two special types of families that we need to state the main result.

Definition 13 (n-TOP, n-BOTTOM) For n > 2 define:
o Dy, ={be€{0,1}" [ #:(b) =n or #:(b) =n— 1}
® Dipom = {0 € {0,1}" [ #1(b) =0 or #:1(b) =1}

These sets of bitstrings are used to define for every n two n-families:

o n-TOP = (D}, )
e n-BOTTOM = (D} ,0m)

Now we can state our main result. It gives a characterization of the polynomial verboseness classes
that contain p-bi-immune languages.

Theorem 14 (Main Theorem) Let D be an n-family in normal form. Then

P[D] does not contain p-bi-immune languages iff D C n-BOTTOM or D C n-TOP.

We have to postpone the proof because we first introduce some new definitions and prove some
lemmas that will be used in the proof of Theorem 14 given at the end of the section. Because
of lack of space we can not give all the proofs. We restrict ourselves to the most dificult proof.
The following lemma and Theorem 16 will be used to prove the if-part of the proof of the Main
Theorem.

Lemma 15 For alln > 2:
P[n-BOTTOM] = P[2-BOTTOM)] and P[n-TOP] = P[2-TOP]

Theorem 16
A € P[2-BOTTOM] = A is not p-bi-immune.

A € P[2-TOP] = A is not p-bi-immune.

To prove the only if-part of the Main Theorem we look for the minimal families in normal form
that are not subfamilies of n-BOTTOM or n-TOP.

Definition 17 For n > 2 define three special sets of bitstrings D7, D}, and Dy as follows:
e D" = {000""2 010"2 11072}
e D ={011"2101"2 111"~?}
e D ={000""2 0102 100" 2}

The indices s, ¢, and b are meant to remind of selectivity, top and bottom. We show that (D7)
and (D}, D) are the minimal families we are looking for:

Theorem 18 For every n-family D in normal form exactly one of the following cases holds:
1. D Cn-TOP or D C n-BOTTOM

2. (D) CD or (D}, D) CD



Proof We construct a tally set A C {1}* that is in P[(D}, D}')] and p-bi-immune. We will
diagonalize against every Turing machine that could possibly decide an infinite subset of A or A
(where A is {1}*\ A). Let (M})gen be a standard enumeration of polynomial time Turing machines
such that the running time of M} is bounded by a polynomial py, say n'°¢* 4 log k. We have to
ensure that for every M}, that accepts infinitely many words there are words wy, wy € L(Mj,) with
w; € A and wy € A. For every n € N we define stepwise approximations to A and to A. For this
purpose we use a sequence of natural numbers (ng)ren that grows fast enough that on inputs of
length > n; we can simulate all A/; with j <7 —1 on all words of length < n; ;. It is sufficient
to define ng = 1, nj;1 = 2%. During the construction of A and A we keep track of a bunch
of parameters. After step n we will have constructed four disjoint sets IN,, OUT,,, OLD,, and
NEW,, such that IN,, U OUT, U OLD,, UNEW,, = {1}=". For all n it will hold that IN,, C IN,, ;4
and OUT,, C OUT,;;. In the end we define A = [J, IN,, and the construction will then yield
A=, OUT,.

The sets OLD,, and NEW,, contain those words up to length n for which membership in A or A
is not decided after step n. We also maintain a finite list L, C N of indices of Turing machines.
An index k enters the list at construction step mn; and is removed from the list at a later step
n only if both requirements for M, are fulfilled, i.e. there are w; € IN,, and w, € OUT,, with
My, (wy) = accept and My (wy) = accept.

Which requirements are still unfulfilled after step n is expressed by the function r, that maps
every k to a subset of {in, out}. E.g., r,(k) = {in} means that it is still required to put a w;
with My (w;) = accept into A at some later stage, but there already is a w, € OUT, with
My, (wy) = accept. We also need a parameter status, with possible values ¢ and b. If status, = b
then at most one of the sets OLD,, and NEW,, will become part of A in a later step, if status,, = ¢
then at least one of the sets OLD,, and NEW,, will enter A later on.

As a last parameter we need index,, € L, U{oco}. If after a construction step index,, = k € L,, this
means that there is a requirement for M, that we would like to fulfill by putting a w € OLD,,_
into A or A but we are at the moment hindered to do this by the current value of status,. Therefore
we have to wait to do so until the status has changed or until the requirement is overruled by a
requirement with higher priority, i.e. by a requirement for a machine M with k' < k.

Now let IN,,_;, OUT,,_4, OLD,,_1, NEW,,_4, L,,_1, r,,_1, status,_; and index,_; be already con-
structed. At step n consider the new word 1". Check wether n = n; for some 1.

Case 1: n # n; for all 7. Add the new word 1" to the set NEW, leave everything else unchanged.

IN,, = IN,_; and OUT,, = OUT,,_,

OLD,, = OLD,,_; and NEW, = NEW,_; U {1"}
L,=1L,  U{i}and r, =71,

status, = status,_; and index,, = index,_

Case 2: n = n; for some i. Suppose that status,_; = b. (In case status,,_; =t we have analogous
subcases. See explanation below.) For every k € L,,_; and for every € OLD,,_; compute Mj/(z).
Three different cases can occur:

Case 2.1: My (x) = reject for all k and x. No requirement for k < index,, ; can be fulfilled at this
stage. On the other hand there is nothing wrong in putting OLD,,_; into A. Therefore we add
OLD,,_; to OUT,,_1, change the status from b to ¢ and give up the restriction on indices possibly
imposed by index,,_;.

IN, = IN,_; and OUT,, = OUT,_; U OLD,_,
OLD, = NEW,,_; and NEW,, = {1}
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Case 2.2: My (z) = accept for some k and z. Choose ky as the minimal & for which this happens
and let zo be the smallest word in OLD,,_; with My, (z) = accept. We distinguish two subcases
depending on the value of r,_1 (ko).

Case 2.2.1: out € r,_1(ko). We can directly fulfill the requirement for ky by putting z, (and the
whole set OLD,, ;) into A. If both requirements for ko are then fullfilled we remove kq from the
list of machine indices; else we remove the requirement out from r,_1(ky). We also change the
status to t.

IN,, = IN,,_; and OUT,, = OUT,_; UOLD,,_;

OLD,, = NEW,,_; and NEW,, = {1"}

if r,_1(ko) = {in, out} then L, = L, U {i}

if r,_1(ko) = {out} then L, = (L, 1 \ {ko}) U {i}

i) = a1 (ko) \ {out} and ro(k) = ro_ (k) for k # ko
status,, = t and index,, = oo

Case 2.2.2: r, 1(ko) = {in} We would like to put OLD,,; including z, into A, but we can’t
do this at this moment because then we would have to put NEW,,_; into A (remember that in
status b at most one of the sets OLD,,_; and NEW,,_; may enter A). But maybe we need words
from NEW,,_; to fulfill in-requirements with higher priority. Therefore we only change index to
ko without fulfilling any requirement. We let the sets OLD and NEW change their roles.

IN,, = IN,,_; and OUT,, = OUT,_;
OLD, = NEW,_; and NEW,, = OLD,_, U {17}
L, = L, 1 U/{i}, r, = r,_1, status, = status,_; and index, = ko

How do we deal with Case 2 if status,_; = t7 Mainly the roles of IN and OUT are exchanged.
Details are omitted. This ends the description of the procedure. We now state some properties of
the construction.

Claim 1 Suppose that after some stage n x € OLD,, and y € NEW,,. If status, = ¢, then x € A
or y € A. If status,, = b, then x ¢ A or y ¢ A.

This claim is verified by considering the different cases that can happen during the procedure.
Claim 2 For every n there is a step m in the construction where 1" enters IN,, or OUT,,.

The word 1" enters NEW at step n. Suppose n;_1 < n < n;. Then at step n; 1™ enters OLD. At
step n;11 one of the Cases 2.1, 2.2.1 or 2.2.2 occurs. In Case 2.1 and Case 2.2.1 1™ is moved to IN
or OUT. Suppose Case 2.2.2 occurs and index is set to ky. Then together with 1™ there is a word
zo in OLD with My, (x¢) = accept. Now 1™ and zy can possibly oscillate from OLD to NEW and
back again. But each time 1" and xy are in NEW it holds that index < kj. Therefore the open
requirement for ky can not be fulfilled in a situation where 1" € NEW.

How many oscillations can happen without putting 1" into IN or OUT? If at a step n; 1" is in
OLD,,  either

e 1" is put into IN or OUT or

e index is changed from oo to a k < kg or

11



e a requirement is fulfilled for a £ < k.

Therefore at most kg - 2(ko — 1) oscillations can happen before 1" moves to IN or OUT.
Claim 3 For each k& where L(M}) is infinite at some step of the procedure r(k) is empty.

Assume that kg is the smallest k& where L(M}) is infinite and r,, (k) # 0 for all n. Let mg be such
that

e for all k < ko with L(M}) infinite r,,, = () and
e for all k& < ko with L(M}) finite is L(M}) C {1}™ ! and
o my > Ny,

Consider m; = min{m | 1™ € L(My), m > my}. Assume w.l.o.g. that r,,, = {in}. If n; 1 <my <
n; then in step n; 1™ enters OLD, kg is in the requirement list L and there is no requirement left
with higher priority. This means that in step n;;; either Case 2.2.1 or 2.2.2 occurs. In Case 2.2.1
where status = t the in-requirement is fulfilled which contradicts the assumption. In Case 2.2.2
where status = b index is set to ky. Then at step n; o Case 2.1 occurs (because there are no k£ in
list L with £ < index). The status is changed to ¢, 1™ is in OLD again and at step n;;3 1™ will
be moved to IN because Case 2.2.1 occurs.

Claim 2 implies that A =J, OUT,. Claim 3 implies that A indeed is p-bi-immune.

Claim 4 The construction of IN,,, OUT,,, OLD,,, NEW,,, and status,, can be done in time poly-
nomial in n.

This is the case because we have only to simulate the machines M, for k£ € L,,_; on words of
length n; 1 when n; <n.

Claim 5 A isin P [(D}, D}')].

Consider an input (x1, ... ,x,). If m = max; |z;| compute IN,,, OUT,,, OLD,,, NEW,,, and status,,.
Claim 4 ensures that this can be done in polynomial time.

Suppose status,, = b (the case status,, = t is treated analogously). Suppose that there are ¢ and
J, @ < j with z; € OLD,,, and x; € NEW,, (or z; € NEW,, and z; € OLD,,,). Because of Claim 1
we know that xa(x1,...,x,)[4,j] € {00,01,10}. For z; with [ # i, j different cases can occur.

e If z; € IN,, then y4(z;) = 1.

e If x; € OUT,, then xa(x;) = 0.

e If ; and z; are both in OLD,, (or both in NEW,,) then x4(z;) = xa(z;).
e If ; and z; are both in NEW,, (or both in OLD,, then x4(z;) = xa(x;).

Therefore we can apply projections 7} or 7] or replacements p;; or p;; to determine the bits

of xa(z1,...,z,)[l] depending on xa(z1,...,z,)[i,j]. Thus we get a set D of three bitstrings
containing xa(xy,...,z,) and D € (D}). O
Lemma 20 For alln >3 P[(D")] = P[(D3)].

Theorem 21 For all n > 2 the class P[{D3?)] contains a p-bi-immune language A.

12



Proof of Main Theorem

if-part: We want to show that if D C n-TOP or D C n-BOTTOM then P [D] does not contain
p-bi-immune languages. It suffices to show that P [n-TOP] and P [n-BOTTOM] do not contain p-
bi-immune languages. Because of Lemma 15 it suffices to show that P [2-TOP] and P [2-BOTTOM]
do not contain p-bi-immune languages. But this holds by Theorem 16.

only if-part: For this direction we want to show that for D with D € n-TOP and D € n-BOTTOM
P [D] contains p-bi-immune languages. By Theorem 18 we know that (D) C D or (D}, D}') C D.
Therefore it suffices to show that P [(D?)] and P [(D}, D}')] contain p-bi-immune languages. By
Theorem 19 P [(D}, Dy)] contains p-bi-immune languages. By Lemma 20 we know P [(DZ)] =
P [(D?)]. By Theorem 21 P [(D?)] contains p-bi-immune languages. This finishes the proof. [
If we specialize the Main Theorem to tuple-length two and to SIZE-classes we get the following
corrolaries:

Corollary 22 (Tuple-Length 2)
e P[(2,2)-CARD] contains p-bi-immune languages.
e P[2-TOP] does not contain p-bi-immune languages.

e P[2-BOTTOM) does not contain p-bi-immune languages.

Corollary 23 (SIZE-Classes)
Forn>2

e P[(k,n)-SIZE)] contains p-bi-immune languages iff k > 3.
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1

The demand for formal verification of communication protocols is increasing since the use of
distributed systems is still rapidly growing. Ordered binary decision diagrams (OBDDs) are widely
and successfully used in the area of digital circuit verification. This suggests an application of
OBDD techniques to the verification of protocols, but the formal modelling of a complete protocol
is too complex for a verification with OBDDs using current techniques. Therefore, the model has to
be restricted. The model we are using is as least restricted as needed and preserves as much of the
protocol’s properties as possible. Since there is no further knowledge about protocol verification
using OBDD techniques, we decided to use two common data link protocols to gain experience.
The experimental results are leading to an approach to the problem of finding well suited orders
of input variables needed for an efficient OBDD representation. Furthermore, we introduce a
technique for avoiding time consuming computations by using additional hardware. As a result,
we have obtained general knowledge on OBDD-based communication protocol verification that
will be applied to more complex protocols.
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Abstract

Downward translation of equality refers to cases where a collapse of some pair of complexity
classes would induce a collapse of some other pair of complexity classes that (a priori) one expects
are smaller. Recently, the first downward translation of equality was obtained that applied to
the polynomial hierarchy—in particular, to bounded access to its levels [HHH]. In this paper, we
provide a much broader downward translation that extends not only that downward translation
but also that translation’s elegant enhancement by Buhrman and Fortnow [BF96]. Our work also
sheds light on previous research on the structure of refined polynomial hierarchies [Sel95, Sel94],
and strengthens the connection between the collapse of bounded query hierarchies and the collapse
of the polynomial hierarchy.
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Learning Dead Ends in Sokoban

Stefan Edelkamp, Stefan Schrodl *

Zusammenfassung

A major issue in heuristic search is the detection of dead ends, i.e., positions which
cannot possibly be solved on any available branch. We present a general algorithm ADP* as
a conservative extension of the well-known A*-algorithm to deal with such cases. It detects
and generalizes dead end patterns; they are stored and utilized to prune the search space.

Recently, the Sokoban puzzle was considered to be a challenge for Al search techniques.
We chose this domain for evaluating our algorithm, and present experimental results.

1 Introduction

The main goal in Heuristic Search is to control huge (in general exponential sized) search spaces.
Two different orthogonal approaches can be distinguished: First, to devise an heuristic that esti-
mates the optimal solution length for every state in the space as accurate as possible. Second, in
several domains there are one-way moves that can never be went back on (doors may shut if we
go through, or handles might even be installed only on one side). Pruning is used to discard such
dead ends, i.e., branches that cannot possibly lead to a goal.

In this paper we propose an extension of the well known A* algorithm proposed by Hart,
Nilsson and Raphael (1968) that allows to detect, memorize and generalize situations that are
dead. Herein, generalization is done by restricting to relevant (partial) subpositions responsible
for the failure. A data structure called Subposition Store is used for efficient storage and retrieval
of these subposition. The idea of generalisation is closely related to duplicate pruning such as in
Edelkamp (1997).

The algorithm is evaluated in the domain of the Sokoban puzzle, which is one of the remaining
one-person games in which the human solution quality still outperforms all attempts to automatic
solving strategies coded in a computer program. In Sokoban n balls are placed somewhere in a
maze containing n goal fields which they must eventually reach. The player controls a man which
can traverse the board and push the balls onto adjacent empty squares. Three problems can
be distinguished: Decide, Pushes and Mowves. Decide is just the task to solve the puzzle. Pushes
additionally asks to minimize the number of ball pushes whereas Moves request an optimal number
of man movements. Although all problems are computational equivalent the actual search spaces
differ. Sokoban is proven to be NP-hard by Culbersone (1997) for a growing board and number
of balls but polynomial for a fixed number of balls. A solution for Moves and Pushes implies a
solution for Decide, but optimal solutions to Moves and Pushes fail to imply each other.

Comparing man and machine can be done by studying the the set of 90 problems for the
Sokoban Puzzle provided at http://xsokoban.lcs.mit.edu/xsokoban.html. Note that even when
minimizing the number of moves the problem space has to be compressed to a weighted graph
with each edge corresponding to a ball push. The weight of the edge is given by the shortest path
from the current man position to the next ball to move.

*Institut fiir Informatik, Albert-Ludwigs-Universitdt, Am Flughafen 17, D-79110 Freiburg eMail:
{edelkamp,schroedl}@informatik.uni-freiburg.de, Stefan Edelkamp is supported by DFG within graduate program
on human and machine intelligence
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of the one ball problems between each ball and each goal field. To calculate the matching we use
an O(n*) minimum cost network flow algorithm (see Mehlhorn (1984)) based on n invocations of
Dijkstra’s original single source shortest path algorithm, which runs in O(n?). Furthermore, the
heuristic can be refined, i.g. by counting the number of balls that are too closed together to enable
the choice of the shortest path.

The underlying grid itself can be shorten to a weighted graph by introducing precomputed ma-
cro moves. We distinguish tunnel macros and goal macros. The former forwards a ball throughout
a narrow corridor and the latter partitions the search space by directly placing balls onto empty
goal fields when entering a goal room on an articulation square (i.g. a sole entrance of width one).

1.1 Detecting Immediate Dead Ends

We implemented the following procedure stuck to detect simple positions of this type. Call a
ball free if it can possibly be pushed in any direction; that is, if it has two opposite adjacent
empty squares either in horizontal or vertical direction. As it is removed, other balls may become
mobile, in turn. We repeat this procedure and eventually, the status of all balls settles. If there
are remaining balls the position is a dead-end: In order to free a ball with the man it is necessary
that at least one of its neighbors has to be free.

The algorithm is implemented using a queue () comprising all balls whose status could still
change. Initially all balls are enqueued. Until ) gets empty, one element at time is examined; in
the case that a dequeued unfree ball becomes free its unfree neighbors are inserted. The run time
of the stuck algorithm is O(n), since each ball that is found free only gives rise to a maximum of
four neighbors to be enqueued.

1.2 Bottom-Up-Propagation

Procedure stuck described above can only detect a fraction of all the dead ends actually occurring.
Let us now turn to additional methods in order to identify more of them. A position is dead if
all successor positions are dead. In some leaf nodes in the search tree stuck determines the set
of responsible balls: a dead subposition. To compute the dead subposition of the parent we add
each ball which is already included in the dead subposition of at least one of the successors, and
account for the respective moved ball.

1.3 Decomposition

A Sokoban position is dead if it contains a subset of balls that cannot be solved even if the re-
maining balls are removed. For example, this subposition could consist of the balls in an isolated,
separate room. Thus, we can use decomposition to detect deadlocks more quickly by guessing sub-
positions and determining their solvability. Intuitively, these subpositions are “clusters” containing
balls which are highly dependent on each other (e.g., blocking each other), and independent of
the rest. We experimented with two different decomposition heuristics: 1) cc: Considering unre-
achable fields the following observation is central for our approach in finding dead positions: A
position with a non-goal field on which the man can never get to is dead. Therefore, the first
idea of decomposing a position is to take the graph G of all empty squares and partition G into
connected rachable components using O(B) time, with B being the size of the graph G. Collect
all balls that are adjacent to one component and merge components that have a ball in common.
If every empty square can be reached by the man the position is likely to be solvable. 2) one: This
heuristic breaks an n-ball problem into an 1-ball problem and an (n — 1)-ball problem by trying
to push a single ball onto a goal field with the other balls congealed to walls.
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therefore a shallow search. A good trade-off has to be found: the characteristics responsible for
the dead end on the one hand should appear in only one component and, on the other hand, the
problem parts should be far more easy to analyze than the original one.

2 The Subposition Store

Since dead end testing is done at each expansion, a fast implementation is crucial to the search
algorithm. In Sokoban a pattern consists of one bit per square, indicating whether a ball resides
on it. Therefore, we have to solve a multiple two dimensional dictionary pattern matching problem.
One possibility would be an incremental solution. We could use a dictionary mapping each square
to the patterns it is present in. Moreover, each position is equipped with an array of counters,
one for each pattern keeping track of the number of matches. Since only two squares are affected
per move, such a solution would have O(p) time in the worst case, with p being the number of
patterns. The add and delete lists of pattern according to each square are usually smaller than p in
practice. Let L be the total number of balls of all pattern stored. Assuming a uniform distribution
of the pattern on the board with board size B, the average run time turns out to be O(L/B).

In depth first search (such as IDA*, Korf (1985)), this would be feasible. However, in A* the
vector of p counters is to large to be retrieved at each expansion, so we chose a different approach
that does not store information along with states. The straightforward solution would be to store
each pattern as a bit vector of the board size B, and compare all patterns successively. By a
suitable implementation using logical operations on a machine with word length w, this leads to
an O(pB/w) algorithm.

However, on the average, the number of balls n is considerably smaller than B. Our data
structure SubpositionStore (SPS) allows to skip over squares that do not belong to any of the
stored patterns. There are bit vectors associated with the squares of the board. The i-th pattern
is stored in a distributed way among these vectors, namely in bit ¢ of each one of them. When the
number of patterns exceeds the word width, multiple words have to be provided.

Comparing the pattern store with a given position can proceed square by square. However,
when the entry for some square consists entirely of zeros, we can skip to the next one. Thus, we can
avoid a great deal of useless comparisons by jumping only from one significant square to another,
using a linked list next. This takes O(L) time in the worst case. The bitvector implementation can
exploit the overlap of patterns to reduce execution to O(L/w) in the best case.

Since testing can be finished as soon as all stored patterns have been disproved, further im-
provements can be achieved by appropriately arranging the order of squares. One possibility is
sorting the next array according to the number of ones: it is reasonable to test those squares first
that occur in most patterns. Even a decision tree can be built, depending on the outcome of the
previous test. All these schemes exploit the overlap of patterns.

3 Algorithm ADP*

Decomposition and bottom-up propagation can complement each other in a powerful way: the
former one allows to find dead-end subpositions, and the latter one is able to combine these
results to high-order structures.

Now we are ready to present our main algorithm ADP* (for A* with decomposition and
propagation). It is a conservative extension of the well-known A* algorithm, which consists of the
underlined sections in Fig. 1. As usual, a priority queue PQ) stores the set of open (horizon) nodes
explored in the search tree; it is ordered according to the merit f = g + h, where ¢ is the path
length traveled so far since the root, and h an estimate of the remaining path to a goal. The hash
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of clarity, we abstract from the actual implementation by writing these data structures as sets.

ADP* carries out expansion and decomposition in parallel, sharing the same priority queue
P@ and hash table H. Solving the decomposed subpositions is inherently preferred to top level
expansion, since the heuristic h estimating the goal distance tends to be lower for them. The
top level of the search tree, generated exclusively by expansion, is explored in order to find the
actual solution. Nodes generated by decomposition or which have any ancestor generated by
decomposition are indicated in the algorithm by assigning them a decompose-flag. The sole purpose
of these nodes is to determine solvability. Thus, if they are recognized as either dead or alive, they
do not have to be further considered (expanded or decomposed). There might exist methods
to determine that such a node can be solved, without explicitly computing a solution. Such a
procedure analogous to the stuck function is referred to as solvable in Fig. 1. Note that this
procedure may be an optimistic heuristic; more precisely, we might allow a small one-sided error,
considering dead positions as alive, without affecting the correctness and optimality of the overall
solution. To avoid recomputation of the status, we employ an additional hash table A. If a solvable
node has been generated by expansion, then its parent must be alive, too; BuPropAlive propagates
this status until a decomposition node is reached.

procedure ADP*
PQ <+ PQU {root}; H <+ HU {root};
SPS « 0;
while PQ # () do
u < min{g(v) + h(v)|v € PQ}; PQ <+ PQ\ {u};
if (goal(u))
if (decompose(u)) BuPropAlive(u)
else return path(u)
elsif ((v € SPS for some dead subposition v of u) or stuck(u))
BuPropDead (u)
if not (decompose(u) and u € A)
if (decompose(u) and solvable(u))
BuPropAlive(u)
else
['(u) < Ezpand(u)
A(u) < Decompose(u)
foreach v € T'(u) U A(u)
PQ + PQU {v};
if (v e H)
g(v) <= min{g(v), g(u) + 1}
else
g9(v) <= g(u) +1; H < HU {v};

Abbildung 1: The decomposition and bottom-up-propagation algorithm.

Until the priority queue gets empty, the node with lowest f value in PQ is chosen and removed.
If it is a goal node and we are in the top level search we have found the optimal solution to the
overall problem and are done, according to the correctness of the A* algorithm that constitutes
the underlined part in Fig. 1. After the goal-check we examine the status of the node by invoking
the simple dead end detection algorithm stuck, the lookup procedure in the Subposition Store and
the solvable procedure. If a node is found dead or alive we can propagate the news bottom-up
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‘ level ‘ depth ‘ exp ‘ #p ‘ exp ‘ #p ‘ exp
1 97 45 | 141 45 | 134 44
2 131 4144 | 220 2764 | 127 2485
3 134 468 | 204 167 | 143 252
4 355 | >691320 | 1001 | 668522 | 241 | > 291745
5 143 | >822955 65 | 413541 55 | >370385
6
7
7

110 1807 | 161 69 | 23 88
88 231752 | 125 | 159589 | 156 156370

1 213 | >1068770 | 841 | 738254 | 255 | >1059749
38 81 826069 | 331 | 38178 | 161 83929
78 136 159 14 159 9 159
80 231 3498 91 706 | 815 2996
82 135 >93969 | 122 | 563152 | 81 >93218
83 194 271 | 124 150 | 22 259

Tabelle 1: The effect of the learning dead end pattern.

and turn to the next one in the priority queue. Otherwise, the position remains undefined; it is
decomposed into the set A(u) of subcomponents and expanded into the set I'(u) of successors
found by performing all state transitions available. The ordinary successors are inserted, dropped
and reopened as in usual A*; for duplicates found on different paths, this includes changing the ¢
value to the minimum of the two.

Depending on the given resources, decomposition can be either invoked in every step, once
in a while or only in critical situation. ADP* allows on-line or incremental learning: each dead
subproblem found and inserted into the Subposition Store can be used immediately to prune the
search tree and, therefore, to get deeper into the search tree. Some authors also refer to this aspect
as bootstrapping.

4 Experimental Results

We test the ADP* in the Pushes variant of the Sokoban puzzle. Up to now we have solved 13 levels
of the bechmark xsokoban puzzle. We newly solved level 5, which Junghanns and Schaeffer (1997)
could not handle. Each of them is executed five times. ADP* is called twice, for decomposition
according to heuristics of cc) and one. The resulting Subposition Store in both cases are used
afterwards in two further straight searches without decomposition. The outcome is compared with
a usual A* algorithm. If the memory (2 million hashed states) is exhausted the search is abandoned.

Table 4 shows the number of balls, the optimal solution length, the number of expanded nodes
for the different search schemes, and the total of learned dead end patterns in the Subposition
Store.

The space complexity for our pruning approach with less than a thousand pattern is extremly
small, compared to Junghanns and Schaeffer’s 4.6 MByte dead end pattern database. In general,
the decomposition cc leads to more and smaller patterns due the finer granularity of the partition;
the smaller the pattern the higher the potential for generalisation. Therefore, the reduction in
expansions is more pronounced than with one. Through the decomposition process it quite different
the pruning effect of both strategies is not homogenous and might be used to complement each
other.
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A major issue in heuristic search is the detection of dead ends, i.e., positions which cannot possibly
be solved on any available branch. In this paper we presented a general approach to deal with
such cases. Our algorithm ADP* detects and generalizes dead end patterns; they are stored and
utilized to reduce the search space.

ADP* can be viewed as a pruning strategy which neglects branches that cannot lead to the goal.
It is also possible to prune the search tree at branches that are guaranteed to have abbreviations
or so-called shortcuts. Consider possible moves as a finite alphabet (e.g., U, D, L, R for a sliding
tile puzzle), and branches as strings over it. Then a finite state machine can run in parallel to
the search in order to predict that a given state has already been or will be visited on a shorter
generating path. Such an automaton can be learned prior to the search (Taylor (1993)) or within
the search (Edelkamp (1997)). Storing and retrieving the information for each state can be done
in constant space and time. An important theoretical question for our algorithm is to design a
Subposition Store that achieves the same complexity bound.
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The complexity classes Nearly-BPP and Med*DisP had been recently proposed as limits of effi-
cient computation (Yamakami 96, Schindelhauer 96). For both classes, a polynomial time bounded
algorithm with bounded probabilistic error has to compute correct outputs for at least 1 — 1/n*(")
of inputs of length n. We generalize this notion to general error probabilities and arbitrary com-
plexity classes. For proving the intractability of a problem it is necessary to show that it cannot
be computed within a given error bound or every input length. For this, we introduce a new error
complexity class, where the error is only infinitively often bounded by the error function.

We identify sensible bounds for the error function and derive new diagonalizing techniques.
Using these techniques we present time hierarchies of a new quality: We are able to show that
there are languages computable in time 7" that a machine with asymptotically slower running time
cannot predict within a smaller error than 1/2.

Further, we investigate two classical non recursive problems: the halting problem and the
Kolmogorov complexity function. We give strict lower bounds proving that any heuristic algorithm
that claims to solve one of these problems makes unrecoverable errors with constant probability.
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