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signature schemes and their applications	 Juli ����

CSR������ P�K�ochel	 Performance Measure Properties for Finite Queueing Systems	
August ����

CSR�����	 S�Graupner	 Nichtprozedurale Ablau�ormen in imperativen Sprachen � Co�
routinen und preemptive Threads in C �	 August ����

CSR�����
 M�Jungmann	 Wombat � Ein System zur Bewertung maschineller Lernver�
fahren hinsichtlich ihrer Klassi
kationsg�ute	 August ����

CSR������ W�Benn	 Y�Chen	 I�Gringer	 A Rule�based Strategy for Schema Integration
in a Heterogeneous Information Environment	 Januar ���

CSR������ W�Benn	 I�Gringer	 Datenbank�Anwendungen �uber das Internet	 Februar
���

CSR������ W�Kalfa	 Dynamische Adaption in Betriebssystemen � Das CHEOPS�
Projekt	 M�arz ���

CSR������ Jahresbericht der Fakult�at f�ur Informatik ����	 Januar ���

CSR������ D�Monjau �Hrsg��	 Custom Computing � GI�ITG Workshop	 Juni ���	
Schlo� Dagstuhl

CSR������ W�Dilger	 M�Schlosser	 J�Zeidler	 A�Ittner	 Beitr�age zum �� Fachgruppen�
tre�en Maschinelles Lernen der GI�Fachgruppe �����

CSR��	��� Jahresbericht der Fakult�at f�ur Informatik ���	 Januar ����

CSR��	��� D�Monjau �Hrsg��	 Hardwarebeschreibungssprachen und Modellierungspa�
radigmen	 �� ITG�GI�GMM�Workshop	 ������ Februar ����	 Holzhau

CSR��	��� Y�Chen	 W�Benn	 A Systematic Method for Query Evaluation in Federated
Relational Databases	 Juni ����

CSR��	��� A�Goerdt	 The Giant Component Threshold for Random Regular Graphs
with Edge Faults	 Juni ����
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Martin Grohe

Uni Freiburg

Thomas Schwentick

Uni Mainz

Durch Arbeiten von Libkin und anderen Autoren hat sich in den letzten beiden Jahren die
Ho�nung ergeben� die Komplexit�atsklassen TC� und LOGSPACE k�onnten durch den Nachweis�
da	 TC� nur lokale Eigenschaften umfa	t� voneinander getrennt werden� Grob gesagt hei	t dabei
eine Eigenschaft von Tupeln x lokal� wenn sie nur vom Isomorphietyp einer Umgebung von x
abh�angt� LOGSPACE enth�alt hochgradig nicht�lokale Eigenschaften� wie z�B� �s� t��Erreichbarkeit�

Obwohl inzwischen von Hella und Grohe gezeigt wurde� da	 TC� nicht im strengen Sinne �mit
konstant gro	en Umgebungen� lokal ist� ist es nicht ausgeschlossen� da	 TC� in einem schw�acheren
Sinne lokal ist� In der dem Vortrag zugrundeliegenden Arbeit wird gezeigt� da	 alle Eigenschaften�
die von ordnungsinvarianten First�Order Formeln ausgedr�uckt werden k�onnen �einer Teillogik der
TC� charakterisierenden Logik�� lokal im strengen Sinne sind� Damit wird eine o�ene Frage von
Libkin beantwortet�
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Attribute Values

Andreas Birkendorf� Norbert Klasner�

Christian Kuhlmann and Hans U� Simon

Lehrstuhl Mathematik und Informatik

Fakult�at f�ur Mathematik

Ruhr�Universit�at Bochum

D������ Bochum

This paper deals with the UAV learning model of Goldman� Kwek and Scott ���� where �UAV�
is the acronym for �Unspeci
ed Attribute Values�� As in ���� we consider exact learning within the
UAV framework� A smooth transition between exact learning in the UAV setting and standard
exact learning is obtained by putting a 
xed bound r on the number of unspeci
ed attribute
values per instance� For r � �� we obtain the standard model� For r � n �the total number
of attributes�� we obtain the �unrestricted� UAV model� Between these extremes� we 
nd the
hierarchies �UAV�MQr���r�n� �UAV�EQr���r�n� and �UAV�ARB�EQr���r�n�

Our main results are as follows� We present various lower bounds on the number of ARB�EQs
and UAV�MQs in terms of the Vapnik Chervonenkis dimension of the concept class� We show
furthermore that a natural extension of Angluin�s Sun�ower Lemma ��� is still applicable in the
exact UAV learning model� Our UAV Sun�ower Lemma allows to establish exponentially large
lower bounds on the necessary number of UAV�MQs for several popular concept classes� On the
other hand� we can show that slight simpli
cations of these classes are e�ciently learnable using
only few UAV�MQs� Finally� we investigate the inherent structure of the aforementioned three
hierarchies and the relations between them� It turns out that query type UAV�EQr�� is strictly
stronger than UAV�EQr �for each constant r�� The analogous result for UAV�ARB�EQ is valid�
Furthermore� UAV�MQr���log n� is strictly stronger than UAV�MQr� We also determine the relation
between query types chosen from di�erent hierarchies�

Literatur
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Attribut�e�zientes Lernen �Abstract�

Peter Damaschke

FernUniversit�at� Theoretische Informatik II

����� Hagen� Germany

Peter�Damaschke�fernuni�hagen�de

Wir untersuchen in ��� das Lernen von beliebigen Booleschen Funktionen� in denen nur r
der n Variablen relevant sind� mittels Orakelfragen� Probleme dieses Typs haben interessante
Anwendungen ��� ��� ���� Die bisherige Literatur �etwa ��� ��� ���� konzentriert sich auf spezielle
Funktionenklassen und betrachtet nur adaptive Strategien �d�h� die Fragen d�urfen von vorherigen
Antworten abh�angen�� In manchen Anwendungen sind die Orakelfragen �Tests� jedoch zeitrau�
bend� sind aber andererseits parallel ausf�uhrbar� so da	 auch nichtadaptive Strategien gefragt
sind�

Wir geben zun�achst einen simplen� aber fast optimalen adaptiven Algorithmus mit O�r�r logn�
Fragen an� Es stellt sich heraus� da	 alle bis auf r logn Fragen eine r�universelle Belegungsfamilie
bilden m�ussen und nichtadaptiv gestellt werden k�onnen� Im Fall r � � kommen wir mit insgesamt
etwa ����� logn Fragen aus� was nahe an der o�ensichtlichen unteren Schranke � logn liegt�

Es folgt eine kombinatorische Charakterisierung derjenigen Belegungsfamilien� welche die ge�
nannten Funktionen rein nichtadaptiv lernen � sog� r�weise bipartit zusammenh�angende Familien�
Es existieren solche Familien der Gr�o	e O�r�r logn� � das bedeutet� Nichtadaptives attribut�
e�zientes Lernen ist nicht sehr viel teurer als adaptives Lernen� Eine pseudopolynomiale explizite
Konstruktion mittels einer Derandomisierungs�Technik aus ��� hat eine kaum schlechtere Schranke�

Im Falle monotoner Boolescher Funktionen kann die optimale Anzahl von O��r�r logn� Fragen
bereits in O�r� parallelen Runden erreicht werden �unabh�angig von n�� rein nichtadaptives Lernen
ben�otigt dagegen wieder ���r logn� Fragen�

Literatur
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Which Polynomial D�Verboseness Classes Contain

p�Bi�Immune Languages�

Arfst Nickelsen

Fachbereich Informatik der TU Berlin

nicke�cs�tu�berlin�de

Zusammenfassung

The connection is investigated between two well known notions which deal with languages
that show polynomial time behaviour weaker than membership decidability� One notion is po�
lynomial time bi�immunity �p�bi�immunity	� The other one is polynomial time D�verboseness
which captures p�selectivity� p�cheatability� p�verboseness and similar notions� where partial
information about the characteristic function is computed� The type of partial information
is determined by a family of sets of bitstrings D� A full characterization of those D for which
there are p�bi�immune polynomially D�verbose languages is given� Results of the same ty�
pe for special cases of polynomial D�verboseness were already given by Goldsmith� Joseph�
Young 
GJY��� Beigel 
Bei��� and Amir� Gasarch 
AG���

� Introduction

If a language is not decidable in polynomial time one may ask wether it nevertheless exhibits
some polynomial time behaviour� One then does not expect the polynomial time algorithm for
the language A to actually answer the question �x � A � for all inputs x� Instead one weakens
this demand in di�erent ways� One way of weakening is to expect the polynomial time algorithm
to decide only an in
nite subset of A or of A� the complement of A� If even this is not possible� A
is called polynomially bi�immune or p�bi�immune� Another approach is to run the algorithm on
tuples of input words �x�� � � � � xn� and expect some partial information on membership of these
words in A� This means that the algorithm should narrow the range of possibilities for values of
�A�x�� � � � � xn� �where �A is the characteristic function for A �� To get a uni
ed picture of such
classes Beigel� Gasarch and Kinber introduced D�verboseness and strong D�verboseness �BGK���
where the type of partial information is speci
ed by a familyD of sets of bitstrings� The de
nitions
for the time bounded version� namely polynomially D�verbose languages� are given below� Basic
properties of these polynomial D�verboseness classes are presented in �Nic���� The purpose of this
paper is to fully characterize those D for which languages can be at the same time polynomially
D�verbose and p�bi�immune�

� De�nitions

For a given language A the characteristic function �A � !� � f�� �g is de
ned by �A�x� � � �
x � A� We extend �A to tuples of words by �A�x�� � � � � xn� � �A�x�� � � ��A�xn�� For a bitstring b
the number of ��s in b is denoted "��b�� b�i� is the i�th bit of b� and b�i� � � � � j� is the string formed
by the i�th to the j�th bit of b� We now de
ne p�bi�immunity and polynomial D�verboseness�

De�nition � �p�Bi�Immunity� A language A is p	bi	immune if neither A nor A contains an
in
nite language B � P�

�
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strings of length n� i�e�� Di � f�� �gn for all i � f�� � � � � rg� We call D an n	family if

Sr

i��Di �
f�� �gn�

De�nition � �Polynomially D�Verbose� For a given n	family D a language A is in P �D� i�
there is a polynomially time	bounded deterministic Turing machine M that on input �x�� � � � � xn�
outputs a D � D such that �A�x�� � � � � xn� � D� Such languages are called polynomially D	verbose�

For more details on polynomial D�verboseness see �Nic���� We restate some known fact on n�
families and D�verboseness�

De�nition � �Normal Form� An n	family D is in normal form if it is closed under permuta	
tions� projections and replacements�

Fact � �Normal Form� For every n	family D there is a unique n	family D� in normal form with

P �D� � P �D�� �

Fact 	 �Class Inclusion Reduces to Family Inclusion� For n	families D�� D� in normal form

P �D�� � P �D�� i� D� � D� �

De�nition 
 �Generated n�Family� Consider sets of bitstrings D�� � � � � Dr � f�� �gn� Then
hD�� � � � � Dri denotes the minimal n	family D in normal form such that fD�� � � � � Drg � D�
This means that hD�� � � � � Dri is the closure of fD�� � � � � Drg under permutations� projections and
replacements� We say that hD�� � � � � Dri is generated by D�� � � � � Dr�

Some n�families are of special interest� We de
ne n�SEL and �k� n��SIZE�

De�nition � �SEL� SIZE�

� n	SEL � hf�i�n�i j � � i � ngi

� For � � k � �n �k� n�	SIZE � fD � f�� �g� j jDj � kg

The class P ���SEL� equals the class P�SEL of p�selective languages� We get�

Fact  �SEL�
P	SEL � P ��	SEL� � P �n	SEL� for n � �

P ��k� k�	SIZE� � P ��k� n�	SIZE� for n � k

� Previous Results

For polynomial D�verboseness three results about the possibility of p�bi�immunity are known� We
restate these results in our nomenclature� Goldsmith� Joseph and Young �GJY����GJY��� showed
the following�

Theorem �� �Goldsmith� Joseph� Young�
P ��	SEL� contains bi	immune languages�

In the same paper Goldsmith� Joseph and Young �GJY��� give a construction that yields the
following result which was independently obtained by Beigle �Bei����

Theorem �� �Beigel� Goldsmith� Joseph� Young�
P �hf���� ���� ���� ���gi� contains a p	bi	immune language�

On the other hand Amir and Gasarch �AG��� showed�

Theorem �� �Amir� Gasarch�
P ���� ��	SIZE� does not contain p	bi	immune languages�

�



We 
rst de
ne two special types of families that we need to state the main result�

De�nition �� �n�TOP� n�BOTTOM� For n � � de
ne

� Dn
top � fb � f�� �gn j "��b� � n or "��b� � n� �g

� Dn
bottom � fb � f�� �gn j "��b� � � or "��b� � �g

These sets of bitstrings are used to de
ne for every n two n	families

� n	TOP � hDn
topi

� n	BOTTOM � hDn
bottomi

Now we can state our main result� It gives a characterization of the polynomial verboseness classes
that contain p�bi�immune languages�

Theorem �� �Main Theorem� Let D be an n	family in normal form� Then

P �D� does not contain p	bi	immune languages i� D � n	BOTTOM or D � n	TOP�

We have to postpone the proof because we 
rst introduce some new de
nitions and prove some
lemmas that will be used in the proof of Theorem �� given at the end of the section� Because
of lack of space we can not give all the proofs� We restrict ourselves to the most di
cult proof�
The following lemma and Theorem �� will be used to prove the if�part of the proof of the Main
Theorem�

Lemma �� For all n � �

P �n	BOTTOM� � P ��	BOTTOM� and P �n	TOP� � P ��	TOP�

Theorem �	
A � P ��	BOTTOM�	 A is not p	bi	immune�

A � P ��	TOP�	 A is not p	bi	immune�

To prove the only if�part of the Main Theorem we look for the minimal families in normal form
that are not subfamilies of n�BOTTOM or n�TOP�

De�nition �
 For n � � de
ne three special sets of bitstrings Dn
s � D

n
t � and D

n
b as follows

� Dn
s � f���n��� ���n��� ���n��g

� Dn
t � f���n��� ���n��� ���n��g

� Dn
b � f���n��� ���n��� ���n��g

The indices s� t� and b are meant to remind of selectivity� top and bottom� We show that hDn
s i

and hDn
t � D

n
b i are the minimal families we are looking for�

Theorem �� For every n	family D in normal form exactly one of the following cases holds

�� D � n	TOP or D � n	BOTTOM

�� hDn
s i � D or hDn

t � D
n
b i � D

�
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Proof We construct a tally set A � f�g� that is in P �hDn
t � D

n
b i� and p�bi�immune� We will

diagonalize against every Turing machine that could possibly decide an in
nite subset of A or A
�where A is f�g�nA�� Let hMkik�N be a standard enumeration of polynomial time Turing machines
such that the running time of Mk is bounded by a polynomial pk� say nlog k � log k� We have to
ensure that for every Mk that accepts in
nitely many words there are words w�� w� � L�Mk� with
w� � A and w� � A� For every n � N we de
ne stepwise approximations to A and to A� For this
purpose we use a sequence of natural numbers hnkik�N that grows fast enough that on inputs of
length � ni we can simulate all Mj with j � i � � on all words of length � ni��� It is su�cient
to de
ne n� � �� ni�� � �ni� During the construction of A and A we keep track of a bunch
of parameters� After step n we will have constructed four disjoint sets INn� OUTn� OLDn and
NEWn such that INn 
 OUTn 
 OLDn 
 NEWn � f�g�n� For all n it will hold that INn � INn��

and OUTn � OUTn��� In the end we de
ne A �
S

n INn and the construction will then yield
A �

S
nOUTn�

The sets OLDn and NEWn contain those words up to length n for which membership in A or A
is not decided after step n� We also maintain a 
nite list Ln � N of indices of Turing machines�
An index k enters the list at construction step nk and is removed from the list at a later step
n only if both requirements for Mk are ful
lled� i�e� there are w� � INn and w� � OUTn with
Mk�w�� � accept and Mk�w�� � accept�
Which requirements are still unful
lled after step n is expressed by the function rn that maps
every k to a subset of fin� outg� E�g�� rn�k� � fing means that it is still required to put a w�

with Mk�w�� � accept into A at some later stage� but there already is a w� � OUTn with
Mk�w�� � accept� We also need a parameter statusn with possible values t and b� If statusn � b
then at most one of the sets OLDn and NEWn will become part of A in a later step� if statusn � t
then at least one of the sets OLDn and NEWn will enter A later on�
As a last parameter we need indexn � Ln
f�g� If after a construction step indexn � k � Ln this
means that there is a requirement for Mk that we would like to ful
ll by putting a w � OLDn��

into A or A but we are at the moment hindered to do this by the current value of statusn� Therefore
we have to wait to do so until the status has changed or until the requirement is overruled by a
requirement with higher priority� i�e� by a requirement for a machine Mk� with k� � k�
Now let INn��� OUTn��� OLDn��� NEWn��� Ln��� rn��� statusn�� and indexn�� be already con�
structed� At step n consider the new word �n� Check wether n � ni for some i�
Case �� n �� ni for all i� Add the new word �n to the set NEW� leave everything else unchanged�

INn � INn�� and OUTn � OUTn��

OLDn � OLDn�� and NEWn � NEWn�� 
 f�
ng

Ln � Ln�� 
 fig and rn � rn��

statusn � statusn�� and indexn � indexn��

Case �� n � ni for some i� Suppose that statusn�� � b� �In case statusn�� � t we have analogous
subcases� See explanation below�� For every k � Ln�� and for every x � OLDn�� compute Mk�x��
Three di�erent cases can occur�
Case ���� Mk�x� � reject for all k and x� No requirement for k � indexn�� can be ful
lled at this
stage� On the other hand there is nothing wrong in putting OLDn�� into A� Therefore we add
OLDn�� to OUTn��� change the status from b to t and give up the restriction on indices possibly
imposed by indexn���

INn � INn�� and OUTn � OUTn�� 
OLDn��

OLDn � NEWn�� and NEWn � f�ng

��
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Case ���� Mk�x� � accept for some k and x� Choose k� as the minimal k for which this happens
and let x� be the smallest word in OLDn�� with Mk��x�� � accept� We distinguish two subcases
depending on the value of rn���k���
Case ������ out � rn���k��� We can directly ful
ll the requirement for k� by putting x� �and the
whole set OLDn��� into A� If both requirements for k� are then full
lled we remove k� from the
list of machine indices# else we remove the requirement out from rn���k��� We also change the
status to t�

INn � INn�� and OUTn � OUTn�� 
OLDn��

OLDn � NEWn�� and NEWn � f�ng

if rn���k�� � fin� outg then Ln � Ln�� 
 fig

if rn���k�� � foutg then Ln � �Ln�� n fk�g� 
 fig

rn�k�� � rn���k�� n foutg and rn�k� � rn���k� for k �� k�

statusn � t and indexn ��

Case ������ rn���k�� � fing We would like to put OLDn�� including x� into A� but we can�t
do this at this moment because then we would have to put NEWn�� into A �remember that in
status b at most one of the sets OLDn�� and NEWn�� may enter A�� But maybe we need words
from NEWn�� to ful
ll in�requirements with higher priority� Therefore we only change index to
k� without ful
lling any requirement� We let the sets OLD and NEW change their roles�

INn � INn�� and OUTn � OUTn��

OLDn � NEWn�� and NEWn � OLDn�� 
 f�ng

Ln � Ln�� 
 fig� rn � rn��� statusn � statusn�� and indexn � k�

How do we deal with Case � if statusn�� � t Mainly the roles of IN and OUT are exchanged�
Details are omitted� This ends the description of the procedure� We now state some properties of
the construction�

Claim � Suppose that after some stage n x � OLDn and y � NEWn� If statusn � t� then x � A
or y � A� If statusn � b� then x �� A or y �� A�

This claim is veri
ed by considering the di�erent cases that can happen during the procedure�

Claim � For every n there is a step m in the construction where �n enters INm or OUTm�

The word �n enters NEW at step n� Suppose ni�� � n � ni� Then at step ni �
n enters OLD� At

step ni�� one of the Cases ���� ����� or ����� occurs� In Case ��� and Case ����� �n is moved to IN
or OUT� Suppose Case ����� occurs and index is set to k�� Then together with �n there is a word
x� in OLD with Mk��x�� � accept� Now �n and x� can possibly oscillate from OLD to NEW and
back again� But each time �n and x� are in NEW it holds that index � k�� Therefore the open
requirement for k� can not be ful
lled in a situation where �n � NEW�
How many oscillations can happen without putting �n into IN or OUT If at a step nj �n is in
OLDnj�� either

� �n is put into IN or OUT or

� index is changed from � to a k � k� or

��



� a requirement is ful
lled for a k � k��

Therefore at most k� � ��k� � �� oscillations can happen before �n moves to IN or OUT�

Claim � For each k where L�Mk� is in
nite at some step of the procedure r�k� is empty�

Assume that k� is the smallest k where L�Mk� is in
nite and rn�k� ��  for all n� Let m� be such
that

� for all k � k� with L�Mk� in
nite rm�
�  and

� for all k � k� with L�Mk� 
nite is L�Mk� � f�gm��� and

� m� � nk� �

Consider m� � minfm j �m � L�Mk�� m � m�g� Assume w�l�o�g� that rm�
� fing� If ni�� � m� �

ni then in step ni �
m� enters OLD� k� is in the requirement list L and there is no requirement left

with higher priority� This means that in step ni�� either Case ����� or ����� occurs� In Case �����
where status � t the in�requirement is ful
lled which contradicts the assumption� In Case �����
where status � b index is set to k�� Then at step ni�� Case ��� occurs �because there are no k in
list L with k � index�� The status is changed to t� �m� is in OLD again and at step ni�� �m� will
be moved to IN because Case ����� occurs�
Claim � implies that A �

S
nOUTn� Claim � implies that A indeed is p�bi�immune�

Claim � The construction of INn� OUTn� OLDn� NEWn� and statusn can be done in time poly�
nomial in n�

This is the case because we have only to simulate the machines Mk for k � Ln�� on words of
length ni�� when ni � n�

Claim � A is in P �hDn
t � D

n
b i��

Consider an input �x�� � � � � xn�� If m � maxi jxij compute INn� OUTn� OLDn� NEWn� and statusn�
Claim � ensures that this can be done in polynomial time�
Suppose statusm � b �the case statusm � t is treated analogously�� Suppose that there are i and
j� i � j with xi � OLDm and xj � NEWm �or xi � NEWm and xj � OLDm�� Because of Claim �
we know that �A�x�� � � � � xn��i� j� � f��� ��� ��g� For xl with l �� i� j di�erent cases can occur�

� If xl � INm then �A�xl� � ��

� If xl � OUTm then �A�xl� � ��

� If xl and xi are both in OLDm �or both in NEWm� then �A�xl� � �A�xi��

� If xl and xj are both in NEWm �or both in OLDm then �A�xl� � �A�xj��

Therefore we can apply projections ��l or ��l or replacements �i�l or �j�l to determine the bits
of �A�x�� � � � � xn��l� depending on �A�x�� � � � � xn��i� j�� Thus we get a set D of three bitstrings
containing �A�x�� � � � � xn� and D � hDn

b i� �

Lemma �� For all n � � P �hDn
s i� � P �hD�

si��

Theorem �� For all n � � the class P �hD�
si� contains a p	bi	immune language A�
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Proof of Main Theorem
if�part� We want to show that if D � n�TOP or D � n�BOTTOM then P �D� does not contain
p�bi�immune languages� It su�ces to show that P �n�TOP� and P �n�BOTTOM� do not contain p�
bi�immune languages� Because of Lemma �� it su�ces to show that P ���TOP� and P ���BOTTOM�
do not contain p�bi�immune languages� But this holds by Theorem ���
only if�part� For this direction we want to show that for D with D �� n�TOP and D �� n�BOTTOM
P �D� contains p�bi�immune languages� By Theorem �� we know that hDn

s i � D or hDn
t � D

n
b i � D�

Therefore it su�ces to show that P �hDn
s i� and P �hDn

t � D
n
b i� contain p�bi�immune languages� By

Theorem �� P �hDn
t � D

n
b i� contains p�bi�immune languages� By Lemma �� we know P �hDn

s i� �
P �hD�

si�� By Theorem �� P �hD�
si� contains p�bi�immune languages� This 
nishes the proof� �

If we specialize the Main Theorem to tuple�length two and to SIZE�classes we get the following
corrolaries�

Corollary �� �Tuple�Length ��

� P ���� ��	CARD� contains p	bi	immune languages�

� P ��	TOP� does not contain p	bi	immune languages�

� P ��	BOTTOM� does not contain p	bi	immune languages�

Corollary �� �SIZE�Classes�
For n � �

� P ��k� n�	SIZE� contains p	bi	immune languages i� k � ��
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O V C
Protocols � Methods for the Verif ication of

Data Link Protocols

Christoph Meinel� Christian Stangier�

FB IV � Informatik� Universit�at Trier
D������ Trier� Germany

email� fmeinel�stangierg$uni�trier�de

The demand for formal veri
cation of communication protocols is increasing since the use of
distributed systems is still rapidly growing� Ordered binary decision diagrams �OBDDs� are widely
and successfully used in the area of digital circuit veri
cation� This suggests an application of
OBDD techniques to the veri
cation of protocols� but the formal modelling of a complete protocol
is too complex for a veri
cation with OBDDs using current techniques� Therefore� the model has to
be restricted� The model we are using is as least restricted as needed and preserves as much of the
protocol�s properties as possible� Since there is no further knowledge about protocol veri
cation
using OBDD techniques� we decided to use two common data link protocols to gain experience�
The experimental results are leading to an approach to the problem of 
nding well suited orders
of input variables needed for an e�cient OBDD representation� Furthermore� we introduce a
technique for avoiding time consuming computations by using additional hardware� As a result�
we have obtained general knowledge on OBDD�based communication protocol veri
cation that
will be applied to more complex protocols�
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Abstract

Downward translation of equality refers to cases where a collapse of some pair of complexity
classes would induce a collapse of some other pair of complexity classes that �a priori� one expects
are smaller� Recently� the 
rst downward translation of equality was obtained that applied to
the polynomial hierarchy%in particular� to bounded access to its levels �HHH�� In this paper� we
provide a much broader downward translation that extends not only that downward translation
but also that translation�s elegant enhancement by Buhrman and Fortnow �BF���� Our work also
sheds light on previous research on the structure of re
ned polynomial hierarchies �Sel��� Sel����
and strengthens the connection between the collapse of bounded query hierarchies and the collapse
of the polynomial hierarchy�
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Learning Dead Ends in Sokoban

Stefan Edelkamp� Stefan Schr�odl �

Zusammenfassung

A major issue in heuristic search is the detection of dead ends� i�e�� positions which
cannot possibly be solved on any available branch� We present a general algorithm ADP� as
a conservative extension of the well�known A��algorithm to deal with such cases� It detects
and generalizes dead end patterns� they are stored and utilized to prune the search space�

Recently� the Sokoban puzzle was considered to be a challenge for AI search techniques�
We chose this domain for evaluating our algorithm� and present experimental results�

� Introduction

The main goal in Heuristic Search is to control huge �in general exponential sized� search spaces�
Two di�erent orthogonal approaches can be distinguished� First� to devise an heuristic that esti�
mates the optimal solution length for every state in the space as accurate as possible� Second� in
several domains there are one�way moves that can never be went back on �doors may shut if we
go through� or handles might even be installed only on one side�� Pruning is used to discard such
dead ends� i�e�� branches that cannot possibly lead to a goal�

In this paper we propose an extension of the well known A� algorithm proposed by Hart�
Nilsson and Raphael ������ that allows to detect� memorize and generalize situations that are
dead� Herein� generalization is done by restricting to relevant �partial� subpositions responsible
for the failure� A data structure called Subposition Store is used for e�cient storage and retrieval
of these subposition� The idea of generalisation is closely related to duplicate pruning such as in
Edelkamp �������

The algorithm is evaluated in the domain of the Sokoban puzzle� which is one of the remaining
one�person games in which the human solution quality still outperforms all attempts to automatic
solving strategies coded in a computer program� In Sokoban n balls are placed somewhere in a
maze containing n goal 
elds which they must eventually reach� The player controls a man which
can traverse the board and push the balls onto adjacent empty squares� Three problems can
be distinguished� Decide� Pushes and Moves� Decide is just the task to solve the puzzle� Pushes
additionally asks to minimize the number of ball pushes whereasMoves request an optimal number
of man movements� Although all problems are computational equivalent the actual search spaces
di�er� Sokoban is proven to be NP �hard by Culbersone ������ for a growing board and number
of balls but polynomial for a 
xed number of balls� A solution for Moves and Pushes implies a
solution for Decide� but optimal solutions to Moves and Pushes fail to imply each other�

Comparing man and machine can be done by studying the the set of �� problems for the
Sokoban Puzzle provided at http�  xsokoban�lcs�mit�edu xsokoban�html� Note that even when
minimizing the number of moves the problem space has to be compressed to a weighted graph
with each edge corresponding to a ball push� The weight of the edge is given by the shortest path
from the current man position to the next ball to move�

�Institut f�ur Informatik� Albert�Ludwigs�Universit�at� Am Flughafen ��� D������ Freiburg eMail�
fedelkamp�schroedlg�informatik�uni�freiburg�de� Stefan Edelkamp is supported by DFG within graduate program
on human and machine intelligence
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of the one ball problems between each ball and each goal 
eld� To calculate the matching we use
an O�n�� minimum cost network �ow algorithm �see Mehlhorn ������� based on n invocations of
Dijkstra�s original single source shortest path algorithm� which runs in O�n��� Furthermore� the
heuristic can be re
ned� i�g� by counting the number of balls that are too closed together to enable
the choice of the shortest path�

The underlying grid itself can be shorten to a weighted graph by introducing precomputed ma�
cro moves� We distinguish tunnel macros and goal macros� The former forwards a ball throughout
a narrow corridor and the latter partitions the search space by directly placing balls onto empty
goal 
elds when entering a goal room on an articulation square �i�g� a sole entrance of width one��

��� Detecting Immediate Dead Ends

We implemented the following procedure stuck to detect simple positions of this type� Call a
ball free if it can possibly be pushed in any direction# that is� if it has two opposite adjacent
empty squares either in horizontal or vertical direction� As it is removed� other balls may become
mobile� in turn� We repeat this procedure and eventually� the status of all balls settles� If there
are remaining balls the position is a dead�end� In order to free a ball with the man it is necessary
that at least one of its neighbors has to be free�

The algorithm is implemented using a queue Q comprising all balls whose status could still
change� Initially all balls are enqueued� Until Q gets empty� one element at time is examined# in
the case that a dequeued unfree ball becomes free its unfree neighbors are inserted� The run time
of the stuck algorithm is O�n�� since each ball that is found free only gives rise to a maximum of
four neighbors to be enqueued�

��� Bottom�Up�Propagation

Procedure stuck described above can only detect a fraction of all the dead ends actually occurring�
Let us now turn to additional methods in order to identify more of them� A position is dead if
all successor positions are dead� In some leaf nodes in the search tree stuck determines the set
of responsible balls� a dead subposition� To compute the dead subposition of the parent we add
each ball which is already included in the dead subposition of at least one of the successors� and
account for the respective moved ball�

��� Decomposition

A Sokoban position is dead if it contains a subset of balls that cannot be solved even if the re�
maining balls are removed� For example� this subposition could consist of the balls in an isolated�
separate room� Thus� we can use decomposition to detect deadlocks more quickly by guessing sub�
positions and determining their solvability� Intuitively� these subpositions are �clusters� containing
balls which are highly dependent on each other �e�g�� blocking each other�� and independent of
the rest� We experimented with two di�erent decomposition heuristics� �� cc� Considering unre�
achable 
elds the following observation is central for our approach in 
nding dead positions� A
position with a non�goal 
eld on which the man can never get to is dead� Therefore� the 
rst
idea of decomposing a position is to take the graph G of all empty squares and partition G into
connected rachable components using O�B� time� with B being the size of the graph G� Collect
all balls that are adjacent to one component and merge components that have a ball in common�
If every empty square can be reached by the man the position is likely to be solvable� �� one� This
heuristic breaks an n�ball problem into an ��ball problem and an �n � ���ball problem by trying
to push a single ball onto a goal 
eld with the other balls congealed to walls�
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therefore a shallow search� A good trade�o� has to be found� the characteristics responsible for
the dead end on the one hand should appear in only one component and� on the other hand� the
problem parts should be far more easy to analyze than the original one�

� The Subposition Store

Since dead end testing is done at each expansion� a fast implementation is crucial to the search
algorithm� In Sokoban a pattern consists of one bit per square� indicating whether a ball resides
on it� Therefore� we have to solve a multiple two dimensional dictionary pattern matching problem�
One possibility would be an incremental solution� We could use a dictionary mapping each square
to the patterns it is present in� Moreover� each position is equipped with an array of counters�
one for each pattern keeping track of the number of matches� Since only two squares are a�ected
per move� such a solution would have O�p� time in the worst case� with p being the number of
patterns� The add and delete lists of pattern according to each square are usually smaller than p in
practice� Let L be the total number of balls of all pattern stored� Assuming a uniform distribution
of the pattern on the board with board size B� the average run time turns out to be O�L�B��

In depth 
rst search �such as IDA�� Korf �������� this would be feasible� However� in A� the
vector of p counters is to large to be retrieved at each expansion� so we chose a di�erent approach
that does not store information along with states� The straightforward solution would be to store
each pattern as a bit vector of the board size B� and compare all patterns successively� By a
suitable implementation using logical operations on a machine with word length w� this leads to
an O�pB�w� algorithm�

However� on the average� the number of balls n is considerably smaller than B� Our data
structure SubpositionStore �SPS� allows to skip over squares that do not belong to any of the
stored patterns� There are bit vectors associated with the squares of the board� The i�th pattern
is stored in a distributed way among these vectors� namely in bit i of each one of them� When the
number of patterns exceeds the word width� multiple words have to be provided�

Comparing the pattern store with a given position can proceed square by square� However�
when the entry for some square consists entirely of zeros� we can skip to the next one� Thus� we can
avoid a great deal of useless comparisons by jumping only from one signi
cant square to another�
using a linked list next� This takes O�L� time in the worst case� The bitvector implementation can
exploit the overlap of patterns to reduce execution to O�L�w� in the best case�

Since testing can be 
nished as soon as all stored patterns have been disproved� further im�
provements can be achieved by appropriately arranging the order of squares� One possibility is
sorting the next array according to the number of ones� it is reasonable to test those squares 
rst
that occur in most patterns� Even a decision tree can be built� depending on the outcome of the
previous test� All these schemes exploit the overlap of patterns�

� Algorithm ADP
�

Decomposition and bottom�up propagation can complement each other in a powerful way� the
former one allows to 
nd dead�end subpositions� and the latter one is able to combine these
results to high�order structures�

Now we are ready to present our main algorithm ADP� �for A� with decomposition and
propagation�� It is a conservative extension of the well�known A� algorithm� which consists of the
underlined sections in Fig� �� As usual� a priority queue PQ stores the set of open �horizon� nodes
explored in the search tree# it is ordered according to the merit f � g � h� where g is the path
length traveled so far since the root� and h an estimate of the remaining path to a goal� The hash
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� �
of clarity� we abstract from the actual implementation by writing these data structures as sets�

ADP� carries out expansion and decomposition in parallel� sharing the same priority queue
PQ and hash table H� Solving the decomposed subpositions is inherently preferred to top level
expansion� since the heuristic h estimating the goal distance tends to be lower for them� The
top level of the search tree� generated exclusively by expansion� is explored in order to 
nd the
actual solution� Nodes generated by decomposition or which have any ancestor generated by
decomposition are indicated in the algorithm by assigning them a decompose��ag� The sole purpose
of these nodes is to determine solvability� Thus� if they are recognized as either dead or alive� they
do not have to be further considered �expanded or decomposed�� There might exist methods
to determine that such a node can be solved� without explicitly computing a solution� Such a
procedure analogous to the stuck function is referred to as solvable in Fig� �� Note that this
procedure may be an optimistic heuristic# more precisely� we might allow a small one�sided error�
considering dead positions as alive� without a�ecting the correctness and optimality of the overall
solution� To avoid recomputation of the status� we employ an additional hash table A� If a solvable
node has been generated by expansion� then its parent must be alive� too# BuPropAlive propagates
this status until a decomposition node is reached�

procedure ADP�

PQ� PQ 
 frootg# H� H 
 frootg#

SPS � #
while PQ ��  do
u� minfg�v� � h�v�jv � PQg# PQ� PQ n fug#

if �goal�u��

if �decompose�u�� BuPropAlive�u�
else return path�u�

elsif ��v � SPS for some dead subposition v of u� or stuck�u��
BuPropDead�u�
if not �decompose�u� and u � A�
if �decompose�u� and solvable�u��
BuPropAlive�u�

else
&�u�� Expand�u�

'�u�� Decompose�u�
foreach v � &�u� 
'�u�

PQ� PQ 
 fvg#

if �v � H�

g�v�� minfg�v�� g�u� � �g

else
g�v�� g�u� � �# H� H 
 fvg#

Abbildung �� The decomposition and bottom�up�propagation algorithm�

Until the priority queue gets empty� the node with lowest f value in PQ is chosen and removed�
If it is a goal node and we are in the top level search we have found the optimal solution to the
overall problem and are done� according to the correctness of the A� algorithm that constitutes
the underlined part in Fig� �� After the goal�check we examine the status of the node by invoking
the simple dead end detection algorithm stuck� the lookup procedure in the Subposition Store and
the solvable procedure� If a node is found dead or alive we can propagate the news bottom�up
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Tabelle �� The e�ect of the learning dead end pattern�

and turn to the next one in the priority queue� Otherwise� the position remains unde
ned# it is
decomposed into the set '�u� of subcomponents and expanded into the set &�u� of successors
found by performing all state transitions available� The ordinary successors are inserted� dropped
and reopened as in usual A�# for duplicates found on di�erent paths� this includes changing the g
value to the minimum of the two�

Depending on the given resources� decomposition can be either invoked in every step� once
in a while or only in critical situation� ADP� allows on�line or incremental learning� each dead
subproblem found and inserted into the Subposition Store can be used immediately to prune the
search tree and� therefore� to get deeper into the search tree� Some authors also refer to this aspect
as bootstrapping�

� Experimental Results

We test the ADP� in the Pushes variant of the Sokoban puzzle� Up to now we have solved �� levels
of the bechmark xsokoban puzzle� We newly solved level �� which Junghanns and Schae�er ������
could not handle� Each of them is executed 
ve times� ADP� is called twice� for decomposition
according to heuristics of cc� and one� The resulting Subposition Store in both cases are used
afterwards in two further straight searches without decomposition� The outcome is compared with
a usual A� algorithm� If the memory �� million hashed states� is exhausted the search is abandoned�

Table � shows the number of balls� the optimal solution length� the number of expanded nodes
for the di�erent search schemes� and the total of learned dead end patterns in the Subposition
Store�

The space complexity for our pruning approach with less than a thousand pattern is extremly
small� compared to Junghanns and Schae�er�s ��� MByte dead end pattern database� In general�
the decomposition cc leads to more and smaller patterns due the 
ner granularity of the partition#
the smaller the pattern the higher the potential for generalisation� Therefore� the reduction in
expansions is more pronounced than with one� Through the decomposition process it quite di�erent
the pruning e�ect of both strategies is not homogenous and might be used to complement each
other�
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A major issue in heuristic search is the detection of dead ends� i�e�� positions which cannot possibly
be solved on any available branch� In this paper we presented a general approach to deal with
such cases� Our algorithm ADP� detects and generalizes dead end patterns# they are stored and
utilized to reduce the search space�

ADP� can be viewed as a pruning strategy which neglects branches that cannot lead to the goal�
It is also possible to prune the search tree at branches that are guaranteed to have abbreviations
or so�called shortcuts� Consider possible moves as a 
nite alphabet �e�g�� U� D� L� R for a sliding
tile puzzle�� and branches as strings over it� Then a 
nite state machine can run in parallel to
the search in order to predict that a given state has already been or will be visited on a shorter
generating path� Such an automaton can be learned prior to the search �Taylor ������� or within
the search �Edelkamp �������� Storing and retrieving the information for each state can be done
in constant space and time� An important theoretical question for our algorithm is to design a
Subposition Store that achieves the same complexity bound�
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The complexity classes Nearly�BPP and Med(DisP had been recently proposed as limits of e��
cient computation �Yamakami ��� Schindelhauer ���� For both classes� a polynomial time bounded
algorithm with bounded probabilistic error has to compute correct outputs for at least �� ��n����

of inputs of length n� We generalize this notion to general error probabilities and arbitrary com�
plexity classes� For proving the intractability of a problem it is necessary to show that it cannot
be computed within a given error bound or every input length� For this� we introduce a new error
complexity class� where the error is only in
nitively often bounded by the error function�

We identify sensible bounds for the error function and derive new diagonalizing techniques�
Using these techniques we present time hierarchies of a new quality� We are able to show that
there are languages computable in time T that a machine with asymptotically slower running time
cannot predict within a smaller error than ����

Further� we investigate two classical non recursive problems� the halting problem and the
Kolmogorov complexity function� We give strict lower bounds proving that any heuristic algorithm
that claims to solve one of these problems makes unrecoverable errors with constant probability�
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